
Cubase64 White Paper
11 real-time audio effects with a computer from 1982

Author: Pex 'Mahoney' Tufvesson, M.Sc.EE
Lund, Sweden, October 2010

http://mahoney.c64.org

This white paper is written to help you understand how the
digital and analog audio processing was implemented in the
Commodore 64 demo "Cubase64" written by Pex 'Mahoney'
Tufvesson in October 2010.

To fully enjoy this paper, some knowledge about digital audio
and computer programming is required. You do not really need
knowledge of 6502 assembly programming or Commodore 64
hardware programming.

Keywords: 8-bit Digital Audio Processing, Commodore 64,
6502 CPU, extreme optimizations

I. INTRODUCTION

This white paper will describe how to manage to do 11
audio effects, in real time, simultaneously, with a home
computer from 1982.

II. SYSTEM REQUIREMENTS

A. Commodore 64
• 64kB RAM

• 6502 processor, 8-bit, 1MHz

• RF antenna output, PAL video standard

• 6581/8580 SID sound chip, 3 oscillators, 1 filter

B. Commodore cassette player

C. TV

D. Joystick

III. SCREEN SHOT

Figure 1. Screen Shot

IV. VIDEO SHOT

Sooner or later you'll find some version uploaded to
YouTube.com. Go and search for "Cubase64".

If you're not happy with a video version of it, go and grab
an emulator of the Commodore 64. There are many, but I'd
recommend the vice emulator at http://www.viceteam.org

With any modern computer and operating system, the
Commodore 64 can be almost flawlessly emulated. You'll have
cope with the monitor refresh being out of sync with the PAL
TV's 50Hz video, though.

And, please make sure that your emulator is using the resid-
fp sound emulation algorithm, for the 6581 version of the SID
sound chip. The 8580 SID chip works too, but has less
interesting filters.

Or, if you're the happy owner of the real deal, please run
Cubase64 on your Commodore 64. If you don't own a
Commodore 64, it's a flea-market bargain at an approximate
price of 50 SEK, €5, $5 or something similar. Oh! The joys of
cheap retro computing!

Think of all the things you can do when not watching TV

http://www.viceteam.org/

V. SPECIFICATION

This is a list of all the requirements for Cubase64:

• Use a Commodore 64 home computer with a CPU
constructed back in 1975, more than 35 years ago. The
6502 CPU used about 4000 transistors, compared to a
recent 2010 Intel CPU with 1.17 billion transistors.
The SID sound chip was designed in 1981, and is
described in the U.S. Patent 4,677,890, which was filed
on February 27, 1983, and issued on July 7, 1987. The
patent expired on July 7, 2004.

• Since the Commodore 64 don't have an accessible
audio-in port, it plays the complete song "Tom's Diner"
by Suzanne Vega. More than 2 minutes of audio.
Frequency range 20-16000Hz. Mono.

• Time stretch. Will play the song with 0-200% speed
without changing the pitch. This algorithm uses the
Fast Fourier Transform to capture the frequency
spectrum of the audio, and then uses the Inverse
Fourier Transform with altered phase information for
reconstructing the original audio with a new time scale.

• Vocoder. For getting a robotic alien-pitched sound.
Also an algorithm based on the Fast Fourier
Transform.

• Auto-Tune. Will make the singing get closer to "perfect
pitch". Works by analyzing the pitch, correcting it and
then recalculating the audio using a pitch vocoder to
compensate for the incorrect singing.

• Sub bass synthesizer. Will find the base frequency of
the input signal and synthesize frequencies two octaves
below the fundamental frequency.

• Equalizer. Will filter frequencies. Three different filter
types can be combined: Low pass filter - will remove
mid and high frequencies, Band pass filter - will
remove low and high frequencies and High pass filter -
will remove mid and low frequencies. This equalizer
also comes with a resonance setting, which will make a
distinct peak in the frequency spectrum around the
cutoff frequency.

• Echo. Will feedback a certain amount of the sound,
just as if standing in a small bathroom or a by a huge
stone wall. The echo delay is selectable from 0.0
millisecond to 32 milliseconds. The input gain will
prevent distortion in the audio computation. The
feedback gain will set how much of the delayed sound
that will remain.

• Tube distortion. Analogue electronics have a non-
linear frequency response that the human ears easily
detects. Some people love it, some don't. This digital
simulation of analogue behavior will mimic the
behavior of a non-linear amplification stage.

• Grungelizer. This effect will limit the number of
quantization values that the audio will use. With CD-

quality audio, there's 65536 levels to choose from. This
grungelizer will give your the option to use 256, 128,
64, 32, 16, 8, 4 or 2 levels. This roughly translates to
"the number of different places" your loudspeaker
membrane will travel to.

• Compressor. This audio effect will analyze the volume
level of the audio, and raise the volume for silent
passages. When applied to a human voice, the sound
will appear to be closer to you.

• Dithering. This audio effect will add a small amount of
noise to the output signal, in order to mask the
quantization noise introduced when changing the
volume or accuracy in the digital domain. Type 1
dithering is continuous, while Type 2 dithering is
program dependent and hence is silent when the
incoming audio is silent.

• Master Gain. This audio effect will change the output
volume for the audio.

• All of these effect can be turned on simultaneously.

VI. HOW MUCH TIME DO WE HAVE?
The 6502 central processing unit (CPU) in the Commodore

64 computer is run at almost 1MHz. This means that there's a
clock ticking 985.248 times per second. I have chosen a sample
playback rate of 7812.5 Hz, which means that we roughly have
126 clock cycles available to calculate and play a new sample:

 Available clock cycles per sample=985248 / 7812.5 = 126

However, the CPU is stalled sometimes, since there are
"more important" chips that need to use the CPU's memory.
The video chip, called VIC-II, will steal the memory bus
whenever it needs to fetch new data for displaying on your TV
set. This happens on every row, and there's 25 rows on the
display, and it needs to fetch 40 characters to display, and it
does this 50 times per second.

Stolen clock cycles per second = 25 * 40 * 50 = 50000

Divide this by the playback rate (7812.5 Hz), and we get

Available clock cycles per sample with graphics = (985248
- 25 * 40 * 50) / 7812.5 = 119.5

This is an average value, since we sometimes have 126
clock cycles available, and sometimes just 126-40 = 86 clock
cycles available.

Now, if only this was the complete picture. It isn't. The
Commodore 64 has a sound chip that wasn't designed for
playing samples. Since there's not much available memory,
they did not intend the SID chip to play samples - 64kB with
8kHz sample rate will give you a some 8 seconds of sound to
play. There was no need for sample playback.

So, we have to fool the SID chip to play samples, even
though it only has the means of playing either a continuous
triangle waveform, sawtooth waveform, pulse-width waveform

or noise waveform. This is done by using the triangle
waveform, resetting the oscillator with an undocumented test-
bit originally implemented for factory testing, setting the
accumulator frequency to change the increment speed of the
accumulator, and then after an exact number of clock cycles
enable the triangle waveform output just briefly, practically
emulating a sample-and-hold filter that will keep the analog
output fixed at a certain voltage. This requires 4 SID register
writes, which will use

 4 writes * (Clocks per LDA instruction + Clock per STA
instruction) = 4 * (2 + 4) = 24 clock cycles.

We now have between (126-24=102) to (86-24=62) clock
cycles available per sample. Sounds complicated? Yes it is. To
make matters worse, the 6502 CPU that will have to trigger all
these registers in the SID chip will need to be completely
synchronized for _every_ sample that is output. Else, the
accumulator will not output a steady amplitude for a given
desired output value.

Thankfully, there are support chips in the Commodore 64
that will help us. But just a little. The 6526 CIA peripheral chip
is used to interrupt the 6502 CPU every 126th clock cycle.

So far, so good. But, this interrupt is not stable. The 6502
CPU was executing something when the 6526 CIA chip said
"please stop what you're doing and come with me". The 6502
response is "yes, I will come, but please let me finish this first".
Which means that the 6502 CPU will execute the first NMI
assembly instructions something between 8 and 14 clock
cycles later. But we need to know exactly how many cycles off
we are.

This can be handled. The 6526 CIA has a byte register that
will hold the current value of the timer, which is incremented
by 1 every clock cycle. We will have to read this value, and
compensate for the clock cycles "lost" during the interrupt
phase.

But, all of this will require a number of clock cycles to be
"wasted". A rough calculation is that the interrupt will take
between 20-30 clock cycles with all of these features enabled.

Which means that we have between (102-30=72) and (62-
30=32) clock cycles available for calculating a sample.

32 clock cycles for a sample is not much. You need to keep
in mind that a simple operation like multiplying two 8-bit
numbers takes between 150 and 400 clock cycles with a 6502
CPU, since it has no hardware support for multiplication. An 8-
bit addition, however, will take 2 clock cycles, which is the
fastest instruction the 6502 can do.

So, we need to be able to utilize "the average number" of
available clock cycles for calculations, since on-the-fly
calculations of samples won't be be possible when the worst-
case occurs. We will have to use a sound buffer.

This sound buffer will be a FIFO, First-In-First-Out
structure. The 6502 CPU already has a hardware stack that
could help us. But, the 6502 stack is a "Last-In-First-Out"
structure. And, it is already in use by the 6502 interrupt handler
and subroutine return addresses. Normally, when the 6502

wants to put a value at the stack, it uses a "PHA" instruction,
which will write the value to memory, and decrease the stack
pointer. When it wants to get the value back, it uses a "PLA"
instruction, which grabs the value, and increases the stack
pointer. For writing sound to the sound buffer in the stack, we
can only use the PHA instruction. The PLA instruction cannot
be used for reading, since the hardware implementation on
PLA in the 6502 CPU only supports reading the last value
written on the stack.

We will have to read the sound buffer with an LDA-
instruction, and decrement our sound buffer pointer manually.
Thus, the 6502 stack will wrap, overwriting old values with
new ones, and any occurring interrupt will overwrite audio data
as well. But, as long as the "render thread" and "playback
thread" stay synchronized, we're good.

So far, we have two threads which needs to run: the audio
rendering thread, and the audio playback thread. To make
smooth updates to the TV screen, we also need a third thread,
the video update thread. This is also an interrupt, but it occurs
twice every frame (100Hz). It takes care of joystick handling,
changes on screen and changes to audio parameters. It also
does the neat trick of disabling the upper and lower border on
the Commodore 64 video chip, to make the visuals nicer.

So, the priority of the threads are:

 1. The audio playback thread (which uses a NMI interrupt)

 2. The video update/audio parameter thread (which uses
the IRQ synced to the TV)

 3. The audio render thread

This means that the audio rendering will get "the rest of the
available clock cycles" when the playback and the video update
has taken what they need. Without the video update thread, we
did have between 32-72 clock cycles available per sample.
With the video update thread, we have in average 40 clock
cycles per sample. We did not gain much clock cycles by
introducing the sound buffer, but we did get the possibility of
changing the graphics presented on the TV.

An assembly instruction on the 6502 CPU takes between 2
and 8 clock cycles to run. 40 clock cycles will approximately
be 40/3 = 13 assembly instructions.

So, the answer to the question "How much time do we
have?" is:

 13 assembly instructions for calculating every new 8-bit
sample.

VII. HOW MUCH MEMORY HAVE WE GOT?
A first-approach sample player on Commodore 64 will pick

1 byte at a time from memory, and output that at a constant rate
to the SID chip. If the sample rate is 7812.5 Hz, filling the
whole memory with nothing but sample data will get us

 64kB / 7812.5 = 8.3 seconds of nice music.

This is far from the 2 minutes that I'd like to have...

And, to make things worse, we do not have 64kB available
to store samples in. The VIC-II registers, SID registers, color
memory, and CIA registers do have useful memory
"underneath them", but unfortunately, we don't have the CPU
time to switch these off, read a value, and then switch them on
again. We need that CPU time for calculations. We lost 4kB.
Then, we need a custom character set, which is 2kB. We need a
screen buffer, which is 1kB. The 6502 stack, and the 6502 zero
page registers will occupy 512 bytes. We're down to 64-4-2-1-
0.5 = 56.5 kilobyte of memory. And, this memory needs to be
shared between the actual program playing the sound, any text
messages appearing on the screen, and the sound data itself.

VIII. THEN HOW DO WE DO IT?
The answer is compression. We need to make a lossy

compression scheme that will playback approximately the right
sound. And, as we realized before, the decompression
algorithm, together with all these audio effects processors,
cannot use more than 40 clock cycles per sample.

It is useful to limit the scope of the compression scheme.
This time, the focus is on reproducing monophonic sounds like
human speech, human singing, a solo violin or a flute.

When playing a 7812.5 Hz sample, there will only be
meaningful analog content in the frequency range between 0-
3900Hz. The rest of the frequencies in the music (4kHz -
20kHz) will have to be played with some other method. I have
chosen to use one of the SID chip's oscillators (there are 3) to
play noise. The amplitude of the noise can be changed, but not
much else. If the SID chip filter is available, it can be used for
removing the white noise's frequencies below 4kHz, not to
interfere with the samples we have calculated. The modelling
of the high frequency spectrum with noise is pretty ok when it
comes to the human voice anyway, since these sounds are
produced by air turbulence in the mouth, filtered by the vocal
apparatus.

The rest of the human speech apparatus works like this:

1. The vocal cords vibrate at a certain frequency, creating a
rich, full sound with lots of high frequency harmonics.

2. The vocal tract will filter this sound, depending on how
the tongue, mouth and cheeks are positioned/moved. They
together create an acoustic chamber that will emphasize a
couple of frequencies (called formants), and attenuate others.
There is another set of sounds, known as the unvoiced and
plosive sounds, which are created or modified by the mouth in
different fashions.

...and that's about it. Really. A nice sexy female voice
contains nothing but air turbulence, vibrating vocal cords and a
gorgeous-looking acoustic chamber.

We need a way of compressing any output that could come
from this voice. So, let's try to separate the speech the same
way it is made. We need to make a model for the frequency of
the voice, and a model for the formants/filter that the vocal
tract form.

I have chosen to take care of the frequency of the voice "in
real time", while doing the audio rendering. I also take care of
the amplitude of the sound "in real time" in the audio render
loop. But, the formant filtering needs to be extracted and put
into memory as tables.

For the lower 4kHz of the audio playback, the encoding
process takes some 25 minutes to run through, using a state-of-
the-art PC. It works like this:

1. Find the fundamental frequency of the sound. For a
human singing voice, this equals the note you'd play on the
piano. Or something in between notes on the piano.

 Lyrics: I am sit - ting in the mor - ning at the di - ner on the cor-ner (breathe)

Figure 2. Fundamental frequency vs. time with lyrics. The
red lines are the “ideal” frequencies found on a piano.

2. Resample the complete 2-minute song into a constant-
pitch audio sample. This sounds really strange, since the tempo
of the song is lost, and the voice is a robotic one-note-song.

3. Extract some 15000 small pieces of this song which we
now will call "formant waveforms". These waveforms are
actually loopable, since we have chosen a fixed frequency for
all of them.

4. Compare all formant waveforms, and find out which of
them sounds the same.

5. Remove formant waveforms that are similar until there's
only 255 of them left.

6. Make a couple of lists with this information:

 * Which formant waveform shall we play now?

 * At which fundamental frequency shall we play it?

 * And with what volume?

This sounds pretty straight forward - but this does not solve
the problem. We only had some 50kB of memory left for audio
data. We want to chose a formant waveform size, to start with.
A female voice does not contain any frequencies below 150Hz.

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0

1 4 0

1 6 0

1 8 0

2 0 0

2 2 0

2 4 0

2 6 0

2 8 0

3 0 0

F
un

da
m

en
ta

l f
re

qu
en

cy
 (

H
z)

T i m e (s l i c e n u m b e r)

That's why we love them, isn't it? So, lets choose a lowest
frequency of 150Hz.

In order to handle sounds with frequencies down to 150Hz,
each waveform is chosen to be 51 bytes long. Why? Because
playing this waveform at 7812.5Hz will then produce a a
fundamental frequency of

7812.5 / 51 = 153 Hz

Now, we need to store 255 waveforms, each 51 bytes in
size, this is

255 * 51 = 13005 bytes of waveform data.

Fair enough.

And, for a two minute song, we need to store the tables
with which formant, frequency and volume. To make a natural
sound, these parameters should be changed approximately 150
times per second. We need

 2 minutes * 60 secs per minute * 150 values per second *
3 bytes per row = 54000 bytes

Oops. Out-of-memory error. Again.

The answer, again, is compression. We want all of that
data, but we need to make a compression scheme that will
handle it. Fortunately, we only need to decompress these
values 150 times per second. So, I chose a lossless compression
scheme for these tables. The only functions that are available
are "please give me the first value" and "please give me the
next value".

IX. SO, WHAT DOES THE DECOMPRESSION RENDER LOOP LOOK LIKE?
As stated before, the formant waveforms are extracted.

Since we only kept 255 waveforms out of originally 15000, we
need to smoothen out the sound a little. We should probably
make as smooth transitions from one waveform to another, to
make the formant transitions as accurate as possible.

The audio will be rendered one period of the sound at a
time. All audio parameters will need to be static during one
period of the waveform. The reason for calculating one period
of the sound at a time is to remove glitches and clicks when
changing the audio parameters. If we did changes in the middle
of a waveform, there would be an audible click at every

parameter change. Now, changes occur at zero crossings of the
audio output, which will be inaudible.

The available audio parameters that can be used with a
basic version of the audio render loop are:

1. Audio pitch. The formant waveform can be resampled
from 100% to 200% of the original speed.

2. "the current formant waveform" number. 0-255

3. "the current formant waveform" volume. 0-15

4. "the next formant waveform" number. 0-255

5. "the next formant waveform" volume. 0-15

The pseudo-code for this loop is:

WaveformIndex = 0.0;
SoundBufferIndex = 0;
while WaveformIndex < WaveformLength
{
 SoundBuffer(SoundBufferIndex++) =
 FormantWaveform[ThisWave][WaveformIndex] * ThisVolume
 + FormantWaveform[NextWave][WaveformIndex] * NextVolume;
 WaveformIndex = WaveformIndex + AudioPitch/100;
}

Figure 3. The audio render loop pseudo code

I previously said that the 6502 CPU had no hardware
support for multiplication, so we need to cheat. This is the
reason for having only 16 different volume levels. We need
tables with premultiplied values. With 16 different volume
levels (where volume multiplier of 0 is pretty silly, so volume
level 0 is not silent, it is audible), we need 16 tables, with 256
values in each. This occupies

 16 tables * 256 bytes = 4kB of volume table memory

 And the floating point arithmetic with the WaveformIndex
needs to be implemented with fixed point numbers.

Which leads us to the fully functional basic version of the
audio render loop, which you can see in Figure 4 at the bottom
of this page.

There are a couple of tricks already used to speed this loop
up. The WaveformIndex is decremented instead of
incremented, since a comparison with zero is "for free", while

 ldy #WaveformLength ;y register is integer part of WaveformIndex throughout the whole loop
 AudioRenderLoop:
 ldx ThisWaveform,y ;read FormantWaveform[CurrentWave] into x register
 lda ThisVolumeTable,x ;multiply it with ThisVolume, and put result in accumulator
 ldx NextWaveform,y ;read FormantWaveform[NextWave] into x register
 adc NextVolumeTable+$0f00,x ;multiply it with NextVolume, and add result to accumulator
 pha ;output the audio sample to the sound buffer in the 6502 stack
 lda WaveformIndexLSB ;put the fractional part of WaveformIndex into accumulator
 sbc #AudioPitch ;add the AudioPitch
 sta WaveformIndexLSB ;save the new fractional part of the WaveformIndex in memory
 bcs AudioNoY ;if there was no carry from the fractional part, skip next instruction
 dey ;decrease the integer part of WaveformIndex due to fractional overflow
 AudioNoY:
 dey ;decrease the integer part of WaveformIndex
 bpl AudioRenderLoop ;If there's still more samples to process, go to top of loop again

 Figure 4. The complete audio render loop.

comparing with WaveformLength costs us an assembly
instruction.

And, the assembly code is written as self modifying code.
The audio parameters are not sent to the audio render loop.
They are directly written into the audio render code. And, to
make the code run even faster, it is copied into a special area of
the memory that is called zero page, which saves a clock cycle
inside the loop where WaveformIndexLSB is written.

The school book example of speeding up computer
algorithms by using loop unrolling does not work here. The
audio render loop contains extensive use of self-modifying
code, all these would need to be reworked into zero-page
pointers instead - and the addressing of zero-page pointers
cannot use registers x and y as above, since the 6502 CPU
instruction set handle these differently. We would get rid of
one branch instruction - but with the addedl overhead of zero-
page pointers we would not gain anything by loop unrolling.

There's another trick used, not easily spotted, though. The
output in the audio buffer needs to be 8-bit unsigned. The audio
waveforms used as raw input are 8-bit signed. The solution of
for-free translation from signed to unsigned arithmetics is in
the VolumeTables. By adding a bias of 0x40 (=decimal 64),
and making sure of always adding two and only two samples
together, the signed data read from the ThisWaveform will end
up being aligned to 0x80 (=decimal 128) after two passes
through the volume tables.

Another, pretty advanced, digital audio topic is the Nyquist
frequency (stated in 1928 by Harry Nyquist, a Swedish-
American engineer) and the aliasing problem when resampling
audio waveforms. To make a long story short, the
WaveformTables should not contain any frequencies above
2kHz, since playing them at 200% pitch would introduce
audible artifacts from signals in the frequency range above
2kHz. Refer to "wheels spinning backwards" on old Western
films on TV, for instance.

We have used all the clock cycles that were available, and
there is not much else we can do here. If we need to add
something to the audio render loop, we will have to remove
something as well.

X. MEMORY MAP

We know that we don't have much memory to use. So,
what about streaming the required data from tape or disk? Then
we would not have to store the tables for waveform, volume
and pitch for the whole 2-minute song.

If we start with the cassette, there is no way of getting 8-bit
data from a cassette. The Commodore 64 has no fast enough
AD-converter. But, there is a 1-bit interface from the cassette,
and carefully toggling this bit will give us data. The normal
tape loader uses 446 clock cycles for indicating a single “0”-
bit, and 668 clock cycles for indicating a single “1” bit. The
maximum transfer rate is 28 bits per 50Hz, which is 175 bytes
per second. This is too little, hence the normal cassette is not
good enough for streaming the data.

The turbo loaders uses 216 clock cycles for a “0” and 326
clock cycles for a “1”. This is 7.6 bytes per 50Hz frame, which
is 381 bytes per second. This data rate is ok. But, the data is in
bit 4 of a register, and we will need loads of CPU time to
decode this bit. So, due to the lack of free CPU clock cycles,
the turbo tape approach is not ok for streaming data.

The same result is with streaming from a 5.25” floppy disk.
The bandwidth with a seriously well-timed disk turbo is 3kB
per second. But, to grab one byte from the disk drive over a 2-
pin serial interface requires approximately 90 clock cycles.
And, we don't have any spare clock cycles lying around, so we
will have to skip using the floppy drive for streaming music
data. - Which is a pity, since we would get rid of some 26kB of
tables if we could.

So, the complete memory map now looks like this:

$0000- Zero page registers

$0040- Zero page self-modifying code

$0100- Audio buffer and 6502 CPU stack

$0200- Bootloader decrunch code

$0258- Program start, Initialization code

$0400- Loader screen text

$0800- Audio effects code

$1900- Which pitch to play

$4a00- Which waveform to play

$8500- Noise volume for 4kHz-15kHz range

$8c00- Waveform Tables

$c000- Calculated volume tables

$d000- Tube distortion volume tables – hidden underneath
VIC, SID and CIA registers.

$e000- Custom charset graphics

$e800- Pre-calculated tables for sub bass frequencies, auto-
tune, waveform pointers and LSR.

$ee00- Demo text and video code

$fc00- Screen memory
Figure 5. Memory layout

XI. SO, WHERE DOES THE AUDIO EFFECTS PROCESSING COME IN?
As stated before, we want to implement time stretch,

vocoding, auto-tune, sub bass, equalizer, echo, tube distortion,
grungelizer, compression, dithering and a master gain. And,
we don't have any spare clock cycles left.

Fortunately, not all of these effects needs to be done in the
digital domain. If we had to add an effect, we would have to
remove something from the audio render loop.

We can start with the "easy" ones. The ones that can be
handled in the analog domain by features in the Commodore
64 audio chip "SID". The SID chip has a master gain setting,
that we can use. This is analog, and has a 16-level setting that
we can use.

Fine, only 10 audio effects to go.

Actually, the dithering is also handled by the SID chip. By
using one of the three SID channels for playing low-level
dithering noise, this will effectively act as an added dithering
noise in the analog part of the audio chain.

Dither is an intentionally applied form of noise used to
randomize quantization error, preventing noise at discrete
frequencies in an audio recording, that are more objectionable
than uncorrelated noise.

Technically speaking, the applied analog noise is not
dithering noise, since this would require some kind of feedback
loop and normally some kind of sigma-delta-modulation. The
correct term would be colored masking noise. Anyway, if you
can live with the fact that this solution is colored masking noise
and not dithering, we're done with this as well.

Fine, only 9 audio effects to go.

The sub bass synthesis is another part where the SID chip
can help us. In fact, this is the part where the SID chip does
excel. Did you know that today in 2010 you can buy hardware
synthesizers, widely used in modern pop music production,
that uses the SID chip? They are used for fat bass sounds,
mostly. Which means that the sub bass sound you hear, is in
fact the SID chip using one of its oscillators to play a triangle
waveform. Effect solved.

Now, there's only 8 audio effects left.

The last effect that we can use the SID chip for is the
equalizer. The low, band and high pass filters are all part of the
analog side of the SID chip, so is the resonance setting and the
cutoff level. We couldn't have done it in the digital domain, so
SID saves the day.

With 7 audio effects to go, we still have not changed the
audio render loop at all.

As much as possible, we need to avoid having to do
calculations inside the audio render loop. Any effect that can
live outside the render loop, we should keep outside the render
loop. But, the only five parameters that we can change are
AudioPitch, ThisWaveform, ThisVolume, NextWaveform,
NextVolume.

Fortunately, a couple of effects can be handled this way.
Remember, the effects left are time stretch, vocoding, auto-
tune, echo, tube distortion, grungelizer, and compression.

Auto-Tune is a patented audio processor created by the
company Antares Audio Technologies. Auto-Tune uses a
phase vocoder to correct pitch in vocal and instrumental
performances. It is used to disguise off-key inaccuracies and
mistakes, and has allowed singers to perform perfectly tuned
vocal tracks without the need of singing in tune. Or, it was the
end of "real musicians". Auto-Tune killed music. Your choise.

Cher recorded the song "Believe" in 1998, which more or less
defined Auto-Tune as a digital audio effect that could be used
or mis-used at wish. It is described in US patent 5973252,
Harold A. Hildebrand, "Pitch detection and intonation
correction apparatus and method", granted 1999-10-26,
assigned to Auburn Audio Technologies, Inc.

 Auto-Tune is actually just a matter of changing the
AudioPitch. Everything else is the same. We have a list already
with the "desired audio pitch", and it is a matter of slightly
adjusting this towards the "perfect pitch". Thankfully, we only
have to do this once per calculated period in the audio, which is
somewhere around 150-300 times per second. Problem solved.

Vocoding is almost the same as auto-tune, or at least, this
version of vocoding is. There are more complicated vocoders
that blends waveforms together in the frequency domain - but
for the basic robotic vocoder sound, changing the pitch into a
constant-pitch audio is enough. So, it is just to ignore the
"desired audio pitch" and replace it with the vocoder pitch.

Bruce Haack's Electric Lucifer (1970) was the first rock
album to include the vocoder and was followed several years
later by Kraftwerk's Autobahn.

The definition of a vocoder is an analysis/synthesis system,
mostly used for speech. In the encoder, the input is passed
through a multi-band filter, each band is passed through an
envelope follower, and the control signals from the envelope
followers are communicated to the decoder. The decoder
applies these (amplitude) control signals to corresponding
filters in the (re)synthesizer. It is a 51-band envelope filter,
since the extracted formant waveforms are filtered in the
encoding step already, removing non-periodic harmonics.

The compressor algorithm normally works with look-ahead
audio amplitude estimation, together with an automatic volume
level. But, since we already have an extracted "this is the
desired volume" list, the compressor is solved by adding the
compressor level to the desired level. If the new level exceeds
the maximum volume level, it is clipped to the maximum
volume level. Again, we only have to do this calculation 150-
300 times per second.

Now, we have 4 audio effects left. We're almost there, don't
you think so?

You probably don't agree at first, but the time stretch
algorithm is actually the easiest of those that are left. When
stuck in the digital audio time domain, it is terribly
complicated. But, the complicated part is already done in the
audio compression algorithm. Remember, we did have a
compressed list that will output ThisWaveformNumber,
ThisVolume and ThisPitch. And the only functions available
was "give me the first value" and "give me next value". Time
stretch works by _not_ asking for the next value, but instead
reusing the old ones, sometimes. This is used for playing the
song slower than normal. For achieving a speedup, we just ask
for the next value, throw it away, and directly ask for the value
after that. This will make the song play faster.

The type of time stretch used in Cubase64 is the phase
vocoder approach, which normally is done like this:

1. compute the instantaneous frequency/amplitude
relationship of the signal using the STFT, which is the discrete
Fourier transform of a short, overlapping and smoothly
windowed block of samples;

2. apply some processing to the Fourier transform
magnitudes and phases (like resampling the FFT blocks); and

3. perform an inverse STFT by taking the inverse Fourier
transform on each chunk and adding the resulting waveform
chunks.

To be able to handle this in real-time, step 1, 2 and 3 are
done already in the audio compression step, and so we can
handle time stretch on-the-fly. Job done.

Three audio effects left. Echo, tube distortion and
grungelizer.

We'll start with the grungelizer now. I think we need to
take a look at the audio render loop algorithm once more.
Currently, each sample is calculated as

 FormantWaveform[ThisWave][WaveformIndex] *
ThisVolume

 + FormantWaveform[NextWave][WaveformIndex] *
NextVolume;

 If we want to make sure that instead of 8-bit output we get
7 or 5 or whatever, we have the possibility of adding the filter
to the audio render loop. It is actually just a matter of making a
simple "and" with a constant. But there is a better way of
making this filtering. Remember, we can't add anything to the
audio render loop without removing something.

So, instead of adding an instruction that takes two clock
cycles into the audio render loop, we will change the contents
of the audio multiplication tables. All of the 4kB of volume
table data will be changed to have lower resolution
multiplication results. We do have to make loads of
calculations for all the new tables, but we save 2 clock cycles
from the audio render loop, and that's what's important this
time.

Two audio effects left. Echo and tube distortion.

Tube distortion (or valve sound) is the characteristic sound
associated with a vacuum tube-based audio amplifier. The
audible significance of tube amplification on audio signals is a
subject of continuing debate among audio enthusiasts.

The tube sound is often subjectively described as having a
"warmth" and "richness", but the source of this is by no means
agreed on. It may be due to the non-linear clipping that occurs
with tube amps, or due to the higher levels of second-order
harmonic distortion, common in single-ended designs resulting
from the characteristics of the tube interacting with the
inductance of the output transformer.

Soft clipping is a very important aspect of tube sound
especially for guitar amplifiers, although a hi-fi amplifier
should not normally ever be driven into clipping. A tube
amplifier will reproduce a wave relatively linearly to a point,
and as the signal moves beyond the linear range of the tube

(into overload), it distorts the signal with a smooth curve
instead of a sudden, sharp-edged cutoff as occurs with
transistors.

We'll implement tube distortion by introducing a non-linear
function into the audio signal chain. There are two ways of
doing these calculations:

• IR-switching technique

• Diagonal Volterra Kernel

IR stands for Impulse Response, and IR-switching handles
the non-linearities by selecting different convolution FIR-filters
depending on the amplitude of the input signal. The first
published papers about this was written by Bellini and Farina
(1998) and Michael Kemp (1999).

The Diagonal Volterra Kernel uses multiple impulse
responses, and convolutes these with AudioInput,
AudioInput^2, AudioInput^3, etc.

Cubase64 calculates the non-linearity by using a second-
order Diagonal Volterra Kernel with Impulse Responses of
length 1. The mathematical equivalent is really simple:

 AudioOut = AudioIn * k1 + AudioIn^2 * k2;

We do not want to do these calculations in real time, so we
will have to incorporate the non-linearity into the volume
tables as well. Even more so, we don't want to do these
calculations at all on the 6502 CPU, so we're better of with a
precalculated table with tube distortion. Do you remember the
"hidden" memory underneath the VIC-II, SID, CIA and color
RAM? There's 4kB of RAM there, and we could grab a ready-
made copy of the tube-distorted volume tables from it. And
apply the grungelizer's and filters when we make the copy. We
will have to briefly pause the audio while the hidden memory
is retrieved.

The tube distortion “high” setting is using exactly the
precalculated table. The “low” setting is achieved by taking
50% of a normal linear volume table and 50% of the
precalculated tube distortion table.

One audio effect left, echo. And this time, we do have to
make a new audio render loop.

Electric echo effects have been used since the 1950s. The
Echoplex is a tape delay effect, first made in 1959 that
recreates the sound of an acoustic echo. Designed by Mike
Battle, the Echoplex set a standard for the effect in the 1960s

Echo is the process of adding a copy of old audio with
slightly lower volume. Fortunately, we already have a sound
buffer which is full of old audio. The buffer is 256 bytes long,
and with a sample rate of 7812.5Hz, this equals

 256 / 7812.5 = 32.7 milliseconds of audio

 The velocity of sound is approximately 343 m/s at a
normal room temperature of about 20°C, so our largest sound
delay of 32 milliseconds will emulate the sound travelling
343*0.032=11 meters, which is the same as us standing in the
middle of a sphere-shaped room 5.5 meters from the walls.

If you want to find such an echo in Sweden, visit the Water
Tower in Växjö. It's not a sphere shaped room, but the area
below the Water Tower is half a sphere.

The feedback volume would be the relative damping that
the material on the walls would make.

Well, it is time for a new audio render loop, this time with
built-in echo: See Figure 6 below for the code, and please
compare with the original audio render loop in Figure 4.

The only changes is that we had to remove the smooth
transition from the current FormantWaveform into the next
one, replace it with adding the echo and the current formant
waveform.

We gained one clock cycle since the reading of the
OldAudioAddress can be done without using the y register as
offset. But, we lost 5 clock cycles when we had to decrement
the OldAudioAddressLSB. So, the echo version of the audio
render loop do take another 4 clock cycles for every sample
that we calculate.

We already have a register y that is decreasing, how come
this isn't used in addressing the "old audio"? The simple answer
to that is that we need wrapping. The old audio buffer is
located between $0100-$01ff in memory. With a fixed start
position with the y register (it's either WaveformLength or
WaveformLength-1 due to reasons not presented in this paper)
– there is no way of efficiently using a decreasing y register to
implement a wrapping buffer. This would need the y register to
be started at the same place as our buffer, which will be more
complicated than the loop above.

This concludes all of the audio effects. And they can all be
used simultaneously. In real time.

On a home computer built in 1982.

XII. REFERENCES

Internet is your friend. Search and you will find. This is a
list with recommended searches.

In order to understand 6502 CPU optimizations, you need a
table with 6502 opcodes and clock cycle count.

You probably also want to take a look at the Commodore
64 memory map, it shows all special addresses that the
Commodore 64 has for its VIC-II, SID and CIA chips, for
instance.

You should want to read more about the audio effects used.
They have names such as auto-tune, pitch vocoder, echo, time
stretch, audio gain, audio quantization, dithering noise,
equalizer and audio compressor (not to be mixed up with audio
compression, which is a completely different cup of tea).

If you find a reference to something called "c64mp3", this
refers to an older version of the Cubase64 demo, which "only"
played the Tom's Diner-song, but without the audio effects.
The mp3-part of the name is of course a joke, as I guess you
understand by now.

For more information about the Commodore 64 “sceners”,
people still programming audio-visual entertainment on this
old home computer, see the Commodore 64 scene database,
http://csdb.dk

XIII. DISCLAIMER

No, you can't use all audio effects at the same time. There
is one exception. The sub bass synthesizer and the dithering
noise have to share one SID oscillator, which means that if you
enable dithering, the sub bass will be silent. And if you enable
the sub bass, the dithering will be lost.

And, since the echo version of the audio render loop did
take four extra clock cycles per sample, the CPU will be
overloaded if you try to use 200% time stretch at the same time
as echo is turned on. Sometimes, the sound buffer will be
consumed faster than the echo render loop can fill it. Using the
joystick at the same time will make matters worse, since
graphical updates have higher priority than audio rendering.
Users of the PC versions of Cubase would probably like to
have it this way as well, but they are stuck in a world where
audio rendering has priority, and the Windows operating
system will crash quite violently if the audio renderings takes
too much CPU power.

This Cubase64 demo does things that retail Cubase version
cannot do. There's no such thing as real-time time stretch in
Cubase. Cubase can only do off-line time stretch, writing audio

 ldy #WaveformLength ;y register is integer part of WaveformIndex throughout the whole loop
 EchoRenderLoop:
 ldx OldAudioAddress ;read the old audio into the x register
 lda EchoFeedbackVolume,x ;multiply it with the EchoFeedbackVolume
 ldx ThisWaveform,y ;read FormantWaveform[CurrentWave] into x register
 adc ThisVolumeTable,x ;multiply it with ThisVolume, and add result to the accumulator
 pha ;output the audio sample to the sound buffer in the 6502 stack
 dec OldAudioAddressLSB ;jump one audio sample forward in the old audio buffer
 lda WaveformIndexLSB ;put the fractional part of WaveformIndex into accumulator
 sbc #AudioPitch ;add the AudioPitch
 sta WaveformIndexLSB ;save the new fractional part of the WaveformIndex in memory
 bcs EchoNoY ;if there was no carry from the fractional part, skip next instruction
 dey ;decrease the integer part of WaveformIndex due to fractional overflow
 EchoNoY:
 dey ;decrease the integer part of WaveformIndex
 bpl EchoRenderLoop ;If there's still more samples to process, go to top of loop again

 Figure 6. The complete audio render loop, with echo.

to disk before playing it. This is due to the inherent timeline
scale being identical for all tracks in a song. If you started to
allow time stretching for one track only, it would need its own
timescale, and the layout of the tracks would need reworking. It
could be done, but I understand the reasons for not
incorporating real-time time stretch in Cubase.

And, you can introduce digital artifacts with the echo
render loop. There's no CPU power left to handle digital
clipping, so any kind of arithmetic overflow will be heard not
as distortion, but rather as high-volume noise. That's the reason
for the Echo input gain setting. It could be hidden for the user,
but it's funnier when it's there, I think.

The company behind the Cubase range of products,
Steinberg, has nothing to do with this, as I hope you've already
guessed. They have never made any official statements about
Cubase and Commodore 64. Cubase is an excellent product, in
my opinion. It does have its history of bugs and crappy
behavior, but compared with the fun you get out of it, it's all
worth it.

There's probably loads of errors in this text. If you did find
one, I'd be happy if I got to know about it. You'll find my
contact details at my homepage

 http://mahoney.c64.org

Some of the "errors" are deliberate, since telling the whole
truth and nothing but the truth would miss the educational flow
of the text. If you want the full Monty on the run, please read
the source code of the encoder and cubase64 demo. It's all
there. unabridged. And probably completely incomprehensible
to 99.9% of the human population.

Most of the comments found in the source code are
meaningful. But there are traces of work-in-progress comments
that should have been cleaned up long ago. The source code is
correct, and most of the comments are too. If you find your
way around the code, it's a fun read. But, it is not for the faint
of heart, and please mind the gap.

Thanks for reading. I hope you have learned something
new and I hope you feel it was time well spent. Please stop by
my homepage http://mahoney.c64.org and give me a comment
or two.

Or even better, head over to http://www.livet.se/visa and
listen to and watch me and my friends sing Commodore 64
music a cappella - and buy a CD or two!

Best Regards, Pex 'Mahoney' Tufvesson, Lund, Sweden,
October 2010.

Pex 'Mahoney' Tufvesson,
M.Sc.EE., has been programming
computers since 1979. PET, ABC-
80, Sinclair ZX Spectrum,
Commodore 64, Amiga 500,
Nintendo 64, Mac and PC. He's
currently working as a hardware
engineer, creating chip designs, and
is the webmaster of a couple of
websites like http://www.livet.se/ord
which is a proverb collection. He's a musician with his own a
cappella group http://www.livet.se/visa Visa Röster. You'll find
more about him on his homepage http://mahoney.c64.org

http://mahoney.c64.org/
http://www.livet.se/visa
http://www.livet.se/ord
http://www.livet.se/ord

	I. Introduction
	II. System Requirements
	A. Commodore 64
	B. Commodore cassette player
	C. TV
	D. Joystick

	III. Screen Shot
	IV. Video Shot
	V. Specification
	VI. How much time do we have?
	VII. How much memory have we got?
	VIII. Then how do we do it?
	IX. So, what does the decompression render loop look like?
	X. Memory Map
	XI. So, where does the audio effects processing come in?
	XII. References
	XIII. Disclaimer

