
Technical details of
Musik Run/Stop

Playing 8-bit samples at 44.1kHz on a
computer from 1982.

Author: Pex 'Mahoney' Tufvesson, M.Sc.EE
Lund, Sweden, February 2014

This white paper is written to help you understand how the
digital and analog audio processing was implemented in the
Commodore 64 demo "Musik Run/Stop" written by Pex
'Mahoney' Tufvesson in February 2014.

To fully enjoy this paper, some knowledge about digital audio
and computer programming is required. You do not really
need knowledge of 6502 assembly programming or
Commodore 64 hardware programming.

Keywords: 8-bit Digital Audio, Commodore 64, 6502 CPU,
extreme optimizations

I. INTRODUCTION
This white paper will describe how to manage to play 8-

bit samples at 44.1kHz with a home computer from 1982.

II. SYSTEM REQUIREMENTS

A. Commodore 64
• 64kB RAM

• 6502 processor, 8-bit, 1MHz

• RF antenna output, PAL video standard

• 6581/8580 SID sound chip, 3 oscillators, 1 filter

B. TV

C. A brain. Yours, preferrably.

III. ACKNOWLEDGEMENTS
Huge thanks to Uwe "THCM" Anfang for helping out with
measurements on real hw. Also thanks to Johan
"Bepp/Triad" Book and "Hedning/G*P" for making a stack
of C64 computers available for this research. Thanks to P-a
"Ruk/Triad" Bäckström for correcting some timing!

IV. SCREEN SHOTS

Think of all the things you can do while not watching TV

Figure 1. Screen Shots

V. VIDEO SHOT
There are a number of versions of "Musik Run/Stop"

uploaded to YouTube. The funniest is the live version with
the audience reactions from the release party on the 15th of
February: Datastorm 2014 in Gothenburg, Sweden. Go
search for "musik run/stop mahoney" at youtube.com and
you'll find them all.

If you're not happy with a video version of it, go and grab
an emulator of the Commodore 64. There are many, but I'd
recommend the vice emulator at http://www.viceteam.org

With any modern computer and operating system, the
Commodore 64 can be emulated quite ok. You'll have to
cope with the monitor refresh being out of sync with the
PAL TV's 50Hz video, though. And this time, the audio SID
emulation isn't good enough – whatever SID software
emulation you'll try, it falls back to approximately 5-bit
audio output resolution, which really isn't good enough. At
least not for me. The fallback is to enable an additional
emulated digital output cartridge called "Digimax" and press
a key when the demo starts, this will make all of the demo
output pure 8-bit samples with a perfect linearity. If you're
happy with that, then you can stop reading this document,
since the rest of the text here will describe to you what really
happens "under the hood" of the 8-bit samples as produced
by the SID 6581/8580 sound chip.

If you're the happy owner of the real deal, please run
Musik Run/Stop on your Commodore 64. It's been running
ok from real floppes, but also using an "Ultimate II" USB-
memory/sd-card-based 1541 emulator. If you don't own a
Commodore 64, it's a flea-market bargain at an approximate
price of 500 SEK, €50, $50 or something similar. Oh! The
joys of cheap retro computing!

VI. SPECIFICATION
This is a list of all the requirements for Musik Run/Stop:

• Use a Commodore 64 home computer with a CPU
constructed back in 1975, that's 39 years ago. The
6502 CPU used about 4000 transistors, compared to
a recent 2010 Intel CPU with 1.17 billion transistors.
The SID sound chip was designed in 1981, and is
described in the U.S. Patent 4,677,890, which was
filed on February 27, 1983, and issued on July 7,
1987. The patent expired on July 7, 2004.

• The CPU runs at 985.248 Hz, which is less than
1MHz.

• We want to play samples at approximately 44.1kHz

VII. HOW MUCH TIME DO WE HAVE?
The 6502 central processing unit (CPU) in the

Commodore 64 computer is run at almost 1MHz. This means
that there's a clock ticking 985.248 times per second.

Thankfully, there are support chips in the Commodore 64
that will help us. But just a little. The 6526 CIA peripheral
chip is used to interrupt the 6502 CPU every time we might
want to trigger a new sample. But for playing samples this
fast, these timing chips are useless.

So we have 985248 CPU clocks per second, and we want
to output 44100 samples per second. That's 985248/44100 =
22.3 clock cycles available per output. Let's choose 22 clock
cycles as target length of our output loop, and we'll end up
with 985248/22 = 44784 Hz, which is good enough.

An assembly instruction on the 6502 CPU takes between
2 and 8 clock cycles to run. 22 clock cycles will
approximately be 6 assembly instructions, which is all we
have available per sample.

So, the answer to the question "How much time do we
have?" is:

6 assembly instructions for calculating every new 8-bit
sample.

VIII. HOW MUCH MEMORY HAVE WE GOT?
A first-approach sample player on Commodore 64 will

pick 1 byte at a time from memory, and output that at a
constant rate to the SID chip. If the sample rate is 44784 Hz,
filling the whole memory with nothing but sample data will
get us

 64kB / 44784 = 1.46 seconds of nice music.

This is not much. But, just face the facts: with 6 assembly
instructions per sample, there's very little room for adding
sample decompression at run-time.

And, to make things worse, we do not have 64kB
available to store samples in. The VIC-II registers, SID
registers, color memory, and CIA registers do have useful
memory "underneath them", but unfortunately, we don't have
the CPU time to switch these off, read a value, and then
switch them on again. We need that CPU time for
calculations. We lost 4kB. Then, we need to keep the
resident part of the disc loader in memory, which is another
1290 bytes.

But, let's skip any kind of screen memory. And only use
the colour memory for the graphics. And two sprites (128
bytes) for outputting all the graphics. And "hide" the full
screen images underneath the VIC-II, SID, CIA and color
memory.

The 6502 stack (which I've reduced to just 48 bytes), and
the 6502 zero page registers will occupy 304 bytes. We're
down to 65536-4096-1290-128-304 = 59718 bytes of
memory. And, this memory needs to be shared between the
actual program playing the sound, the sound data itself, and a
loader routine that can read the next part of the demo after
the 44.1kHz sample playing is done.

IX. MEMORY MAP
It's good to have a plan. So, the complete memory map

now looks like this:

$0000- Zero page registers and self-modifying code

$0100- 6502 CPU stack

$0140- Resident part of disc loader

$0700- Sample memory

$d000- 32 full screen graphics bitmaps (25*40 pixels=125
bytes each)

$e000- Audio effects code, sequencer tables

$f400-
$fff7

Loader music when loading the next part

Figure 5. Memory layout

X. THIS MUST HAVE BEEN DONE BEFORE
If we have 6 assembly instructions per sample, then all

the current known 8-bit sample playing tricks on the
Commodore 64 fails:

There is the "one voice, test-bit, triangle-wave, sample-
and-hold by just briefly enabling waveform"-technique
invented by Otto "SounDemoN" Järvinen in 2008. It has
been used properly in 16kHz, but with very low output
amplitude and around 5-6 bits resolution. Used at 8kHz, the
amplitude is higher – and actually quite enjoyable. But
nowhere near 44.1kHz sample rate. The main reason is that it
requires 4 writes to the SID chip for every output sample
(well, three if you cheat and don't mind having a 16kHz
carrier frequency). So, setting up a sample would require at
least 24 clock cycles for the SID handling only – and the
amplitude would be ridicuously low anyway.

There is the "pulse-width"-technique for playing samples,
but that has even worse carrier noise, and would not be able
to get any higher frequiencies than the highest pitch the SID
chip can produce, which is around 4kHz.

And we have the 4-bit "write to the volume register of
the SID", which doesn't work well on newer SID chip
revisions, since the 8580 SID chip removed the internal
offset voltages for the three voice channels. And, it's only 4
bits. But it has one very big advantage: it needs a single write
to the SID chip, and it's truly jitter insensitive – you don't
need any fancy CPU timing to get the amplitude right.

So, there's no sample playing technique that will do the
trick of playing 44.1kHz samples. We need to think. And we
need to invent something new.

XI. WHAT REGISTERS DO WE HAVE?
This is the register map as taken from the original SID
6581 data sheet:

 If we only have 6 assembly instructions per sample
available, then we will need to find one single write that will
output our sample.
 We can safely ignore anything related to
VOICE1,2 and 3 in the table above, there just isn't anything
in there to exploit. Under the "Filter" section in row 23,
there is a 12-bit filter cutoff value, and a resonance and filter
voice enable bits, which is quite interesting. And at row 24
is the highly interesting Mode/Volume register, which
controls "3 OFF", HP, BP, LP and a 4-bit volume value.
 The register under "Misc" are read only, so there's
no luck in using them at all.

XII. ANY KIND OF BLOCK DIAGRAM WOULD BE NICE
Again, taken from the SID 6581 original datasheet:

XIII. LET'S START THINKING
One year ago, I made a song called "Monophono" – which

accidentially won the C64 music competition at Datastorm
2013. When programming that song, I had huge problems
trying to get rid of a couple of loud clicks that occurred in
the song. I know the SID chip needs special love when
choosing how and when to setup the registers, but these
clicks were in the middle of the song.

I realised that the clicks came whenever I toggled a voice
from being routed through the analog filter of the SID chip,
or not. And, the clicks came louder when doing it on a voice
channel that currently was playing a waveform.

How come? I went back to my own software SID
emulator (similar to reSID, but my own version of it), and
started to read my own code. Nothing special there that could
explain the clicks. So, I went to Bepp/Triad's place to do
some measurements on real hardware. Yes, the clicks are
there. And looking at the audio output, I realised that the
amplification factor of the SID chip's analog filters wasn't 1,
it was actually around -1. Now, you have to realise that most
waveforms that the SID chip produces are very symmetric:
triangle waveforms, pulse waveforms and noise will look
identical when turned "upside-down". But, fortunately, the
sawtooth waveform will not!

Armed with this new knowledge, and with an updated
SID software emulator, it was time to grab a pen and paper
and make some drawings of the innermost parts of the SID
chip:

We do have luck on our side: the three leftmost muxes

are normally controlled by register 23 (Filt 1,2,3) – but
partly also by register 24! If the Mode/Vol register is written
so that no filtering is enabled (HP=LP=BP=0), then the
muxes will pass the signal to the non-filtered bus as well.

Another lucky thing is that the "3 OFF" bit only shuts off
voice 3 when it's not filtered. Normally, this bit was
intended to silence voice 3 when it was used for random
number generation (selecting the noise waveform and
reading OSC 3 output through register 27.

And, the last lucky thing is that the analog filter has an
amplification of "almost -1" – but nobody is perfect, and
let's use those imperfections to our advantage.

XIV. SO HOW DO WE SETUP THE SID CHIP FOR MAGIC?
 lda #$0f ;Setup attack=0 and decay=15
 sta $d405
 sta $d40c
 sta $d413
 lda #$ff ;Setup all sustain&release to 15
 sta $d406
 sta $d40d
 sta $d414
 lda #$49 ;Waveform is square, test bit set
 sta $d404
 sta $d40b
 sta $d412
 lda #$ff ;Filter cutoff as high as possible
 sta $d415
 sta $d416
 lda #$03 ;Enable voice 1 and 2 through filter
 sta $d417

With this setup, all voices will "unfiltered" output their
maximum values. The envelope generators will also be set
to give maximum gain to each voice. For 6581 let's call this
"1 + internal offset voltage".

XV. TIME TO START MEASURING ONE SID CHIP
With this setup, let's run a short measurement program on

the real thing, and measure the audio output. The short
version of the program is:
 X=0
another2:
 Y=0
another:
 write #0 to $d418
 write X to $d418
 write Y to $d418
 increment Y
 as long as Y<=255, do another

increment X
as long as X<=255, do another2
This produces a very interesting output graph:

This shows the first ~160 values of Y in the program

above. We can see the "black line" jumping around a little,
and this is due to the 16Hz high-pass filter on the SID chip
output. We don't have a static zero-level reference.

But, we do have multiple measurements of the same
$d418 write, so for one 6581 SID chip, we get this:

The upper graph shows the standard deviation within one

chip. The red dots are how much the output amplitude
deviates when coming from all other values. And the green
dots shows how much the output amplitude deviates when
coming from the zero level.

The lower graph shows the average output level produced
for all 256 possible values written to $d418. This isn't the
normal 4-bit sample output we used to get when writing to
the volume register. This looks promising.

Let's do the same thing with the 8580 "new revision" of

the SID chip:

From the upper graph we can see that the standard

deviation is way smaller (up to 0.004, compared to the
6581's 0.025). It is a "better" chip, but in this case it's
actually worse. It is more stable, that's true – but looking at
the lower graph, we have lost most of the analog
imperfections. Still, it's an interesting find.

XVI. TIME TO MEASURE MANY SID CHIPS
In order to give any reasonable assurance that this might

work on more than one single SID chip, we measured more
chips, and we could start making statistics out of them.

And out of this, we got a translation table telling us "if
you want this output amplitude, then please write value X
into $d418". It has got 256 different values – but – they are
not linearly distributed at all. But that doesn't matter much,
does it?

Here's what writing these values will get you – showing
all single measurements on all 6581 chips:

We can analyze "how good linearity" we have, by

calculating the standard deviation for every single
amplitude:

In the graph above, we see every single "chosen" $d418

write to represent the amplitude, and in the lower half we
see the standard deviation from the desired amplitude. It
shows how much we deviate from a straight line.

And for all 8580 chips (with the common 8580 amplitude

table):

We can analyze "how good linearity" we have, by
calculating the standard deviation for every single
amplitude:

In the graph above, we see every single "chosen" $d418

write to represent the amplitude, and in the lower half we
see the standard deviation from the desired amplitude. It
shows how much we deviate from a straight line.

XVII. THEN HOW DO WE DO IT?
Well, we need to find those 6 assembly instructions that

can address the memory and write the sample into the SID
$d418-register. The innermost loop could look something
like this:

another:
 lda sample,x ;Load sample value
 sta $d418 ;Send to SID register
 inx ;increase x
 bne another ;and go get another one
...that is four assembly instructions per sample, actually

taking only 4+4+2+3 = 13 clock cycles. Which is 985278/13
= 76kHz audio.

But the problem is that this loop will only handle 256
bytes – then we need to add additional instructions to keep
reading more data from the next page (a group of 256 bytes
in memory). And now we need to introduce self modifying
code, which is nothing to be afraid of in a non-cached flat
memory architecture like the Commodore 64:

another:
current_pointer:
 lda sample,x ;Load sample value
 sta $d418 ;Send to SID register
 inx ;increase x
 bne another ;and go get another one
 inc current_pointer+2 ;increase page number
 jmp another ;and go get the next page
This might look like a viable alternative – but this loop

will take different number of clock cycles every time we
need to increase the high bits of the current_pointer: 13 clock
cycles for 255 samples, and then 13+5+3 = 21 clock cycles
for the 256th sample. This would sound terrible, and what's
worse – the sample would never stop – playing all of the
memory in one continuous loop.

So, we need to waste some clock cycles inside this loop
just for fun (remember, we were playing samples at ~76kHz
in the innermost loop, and that's a little bit too fast, I think!).
To help with the visual part of the demo, we could for

instance send the sample value not only to the SID chip, but
to the VIC-II chip as well – as a colour value for the screen.

Main problem with this is that the C64 VIC-II chip uses
16 colours, and they are heavily "unsorted". So, to be able to
turn something like "output amplitude" into a luminance
value, we'll need a table. So, here we go:

another:
current_pointer:
 ldy sample,x ;Load sample value
 lda colourtable,y
 sta $d020
 sty $d418 ;Send to SID register
 inx ;increase x
 bne another ;and go get another one
 inc current_pointer+2 ;increase page number
 jmp another ;and go get the next page

Now the innermost loop takes 4+4+4+4+2+3=21 clock
cycles. Which is good. A little bit too fast (~47kHz), but that
can be fixed. Still, when going to the next page, we have
21+5+3=29 clock cycles in the loop. Which we'll need to fix
somehow.

So, we will need to be able to grab every "page-breaking"
sample value a little faster than the others. What about this
version, then:

 ldx #0
another:
current_pointer:
 ldy sample,x ;Load sample value
 lda colourtable,y
 sta $d020
 sty $d418 ;Send to SID register
 inx ;increase x
 bne another ;and go get another one
 inc current_pointer+2 ;increase page number
 ldy current_pointer+2
 lda sample_table,y
 beq finish
 sta $d418
 nop
 bne another ;and go get the next page
finish:
 rts ;we're done playing this sound

Well, now we need to know what's important. The most

important feature of this program is that the distance in clock
cycles between every write to the $d418 register is constant.
The innermost loop was 21 clock cycles long. So, we need to
check the number of clock cycles between the "st_ $d418"-
instructions.

From the inner-loop sty $d418 to the outer-loop sta
$d418 there is 2+2+5+3+2+4+4=22 clock cycles. And from
the "sta $d418" to "sty $d418" there is 2+3+4+4+4+4 = 21
clock cycles. We're getting closer.

So, we need to waste one clock cycle somewhere inside
the inner loop, which is harder that it sounds like. The main
problem is that the normal assembly instruction for wasting
clock cycles the no-operation "NOP" actually wastes not one
but two clock cycles. So, it's useless. We'll need to find
another way of doing nothing.

16-bit arithmetics in an 8-bit CPU is the solution. If we
do place the "colour_table" at a bad place in memory, then
the CPU will have to propagate a carry signal to the upper 8
bits of the address bus when adding the y register to the
memory address. The natural place in memory for a
colour_table would be aligned to a page in memory
(addresses looking like $xx00 – ending with two zeroes).
But, if we align this table to $xxff, then whenever y is
anything else than 0, the CPU would waste one clock cycle
increasing the uppermost 8 bits of the address bus. So – job
done, without changing anything in the code.

As an additional bonus – a zero value in the sample data
at every 257th sample will break this loop and stop playing.
Which is good, we found a way of ending sample play as
well.

The code will use exactly the same number of clock
cycles, as long as the sample values in the inner loop are
anything else than 0.

XVIII. JOB DONE
This is how we do it. And by all means, you're welcome

to use the knowledge you gained by reading this white paper
however you want. You can grab the files mentioned in this
white paper somewhere at http://livet.se/mahoney

For more information about the Commodore 64
“sceners”, people still programming audio-visual
entertainment on this old home computer, see the
Commodore 64 scene database, http://csdb.dk

XIX. DISCLAIMER
There's probably loads of errors in this text. If you did

find one, I'd be happy if I got to know about it. You'll find
my contact details at my homepage

 http://mahoney.c64.org

Some of the "errors" are deliberate, since telling the
whole truth and nothing but the truth would miss the
educational flow of the text. If you want the full Monty on
the run, please read the enclosed source code of the
measurement program and the Matlab amplitude table
extraction tool. It's all there. Unabridged. And probably
completely incomprehensible to 99.9% of the human
population.

Most of the comments found in the source code are
meaningful. But there are traces of work-in-progress
comments that should have been cleaned up long ago. The
source code is correct, and most of the comments are too. If
you find your way around the code, it's a fun read. But, it is
not for the faint of heart, and please mind the gap.

Thanks for reading. I hope you have learnt something
new and I hope you feel it was time well spent. Please stop
by my homepage http://mahoney.c64.org and give me a
comment or two.

Best Regards, Pex 'Mahoney' Tufvesson, Lund, Sweden,
February 2014.

Pex 'Mahoney' Tufvesson,
M.Sc.EE., has been programming
computers since 1979. PET, ABC-
80, Sinclair ZX Spectrum,
Commodore 64, Amiga 500,
Nintendo 64, Mac and PC. He's
currently working as a hardware
engineer, creating chip designs, and
is the webmaster of a couple of
websites like http://www.livet.se/ord
which is a proverb collection. He's a musician with his own a
cappella group http://www.livet.se/visa Visa Röster. You'll
find more about him on his homepage
http://mahoney.c64.org

